水平渐近线,是不是只有当极限结果为零时才有
1个回答
关注
展开全部
您好。
水平渐近线不仅仅只有当极限结果为零时才有,它是指函数在极限中的行为。换句话说,当极限的变量无限接近某一值时,函数的值也会随之接近某一值。水平渐近线是用来描述函数在极限中的行为。
一般来说,水平渐近线表示函数在极限中的行为可以抽象为一条水平线,从而可以从图形上直观地表示函数在极限中的行为。有些水平渐近线的极限结果为零,而有些水平渐近线的极限结果不为零,它们可以是正值、负值或无穷大或无穷小。
此外,水平渐近线也可以用来表示函数的有限变化范围。
咨询记录 · 回答于2024-01-05
水平渐近线,是不是只有当极限结果为零时才有
您好。
水陵早渗卜平渐近线不仅仅只有当极限结果为零时才有,它是指函数在极限中的行为。换句话说,当极限的变量无限接近某一值时,函数的值也会随之接近某一值。水平渐近线是用来描述函数在极限中的行为。
一般来说,水平渐近线表示函数在极尺喊雀限中的行为可以抽象为一条水平线,从而可以从图形上直观地表示函数在极限中的行为。有些水平渐近线的极限结果为零,而有些水平渐近线的极限结果不为零,它们可以是正值、负值或无穷大或无穷小。
此外,水平渐近线也可以用来表示函数的有限变化范围。
老师,我发那张图片里的题为什么没有水平渐近线?
看不清楚
方便打字发给我吗?
f(x)=X- 1分之2(x- 2)(x+3),X趋于无穷,为什么没有水平渐近线
由于x趋于无穷,f(x)的值会趋于-∞,因此没有水平渐近线。
老师,怎么看是趋于负无穷的?我不会判断
当函数在某一点上的导数小于0时,我们可以判断该函数在该点处是趋于负无穷的。我们可以通过观察函数在某一点处的导数是否小于零来判断函数是否趋于负无穷:如果导数小于零,则函数在该点处趋于负无穷。
另外,函亩搭数的图像也可以帮助我们判携搏断其是否趋于负无穷。如果函数图像从某一点开始一直向左,辩耐祥且没有上界值,则可以判断该函数是否趋于负无穷。