大数据具体是做什么?有哪些应用?
大数据即海量的数据,一般至少要达到TB级别才能算得上大数据,相比于传统的企业内数据,大数据的内容和结构要更加多样化,数值、文本、视频、语音、图像、文档、XML、HTML等都可以作为大数据的内容。
提到大数据,最常见的应用就是大数据分析,大数据分析的数据来源不仅是局限于企业内部的信息化系统,还包括各种外部系统、机器设备、传感器、数据库的数据,如:政府、银行、国计民生、行业产业、社交网站等数据,通过大数据分析技术及工具将海量数据进行统计汇总后,以图形图表的方式进行数据展现,实现数据的可视化,在此基础上结合机器学习算法,对数据进行深度挖掘,发掘数据的潜在价值。
应用部分,大数据不仅包括企业内部应用系统的数据分析,还包括与行业、产业的深度融合,大数据分析的应用场景具有行业性,不同行业所呈现的内容与分析维度各不相同,具体场景包括:互联网行业、政府行业、金融行业、传统企业中的地产、医疗、能源、制造、电信行业等等。
1. 互联网行业大数据的应用代表为电商、社交、网络检索领域,可以根据销售数据、客户行为(活跃度、商品偏好、购买率等)数据、交易数据、商品收藏数据、售后数据等、搜索数据刻画用户画像,根据客户的喜好为其推荐对应的产品。
2. 政府行业在大数据分析部分包括质检部门、公安部门、气象部门、医疗部门等,质检部门包括对商品生产、加工、物流、贸易、消费全过程的信息进行采集、验证、检查,保证食品物品安全;气象部门通过构建大气运动规律评估模型、气象变化关联性分析等路径,精准地预测气象变化,寻找最佳的解决方案,规划应急、救灾工作。
3. 金融行业的大数据分析多应用于银行、证券、保险等细分领域,在大数据分析方面结合多种渠道数据进行分析,客户在社交媒体上的行为数据、在网站上消费的交易数据、客户办理业务的预留数据,结合客户年龄、资产规模、消费偏好等对客户群进行精准定位,分析其在金融业的需求等。
2022-09-21 广告
一、购物营销
当我们打开淘宝,京东等购物APP时,总是会发现,这些APP比我们自己还懂自己,能够未卜先知的知道我们最近需要什么。
篮球迷在湖人赢了比赛的时候打开淘宝,会发现詹姆斯的球衣就在首页;
一个怀孕的妈妈,打开京东,发现进口的奶粉已经在召唤她购买;
一个经常听神曲的大妈,广场舞音响的推荐总在眼前。
这就是商家通过手机浏览的数据分析,知道我们近期的需求,之后精准的向我们进行推销。
如今人们网络购物的行为越来越频繁,网络购物的体验也越来越好。而影响网络购物体验的一个最重要的方面就是物流的速度。
双11十多年前就火爆中国,但人们记忆犹新的就是双11买的物品很长时间才能拿到,少则一周,多则半个月,严重影响购物者的体验。而如今双十一的成交量增加了上百倍,但送货的速度却提升了不少。很多物品能保证晚上下单,第二天就送达,即使购买的是新疆的葡萄干,也能在24小时到货。
速度提升的背后,离不开大数据的赋能。物流仓储与购物平台合作,通过分析用户的浏览数据,购物车,下定金情况,预知某一地区的购买量,进行提前备货。当用户付款之后,货物是从离用户100公里内的仓储中心发货,而不是千里之外的新疆发货。
通过大数据中心的调控,物流分拣系统能最科学合理的进行装车。在智慧系统的指引下,快递员也能按照最优的线路进行高效的配送。
二、交通出行
如今百度地图、高德地图已经成了我们出行必不可少的工具。没了地图,很多时候我们将寸步难行。有了地图,即使在九曲回肠的复杂道路中,也可以顺利的抵达我们想去的一个网红美食店。
手机地图能够做到精准的导航和实时的路况预测得益于大数据的分析。
一是地图公司有自己数据采集车,前期采集了海量的数据存储在数据库中。
二是每一个使用地图的用户,都共享了自己的位置,贡献了自己的数据。通过对同一时间段同一路段用户的使用情况进行分享,地图很容易就能得知哪里堵车,哪里畅通,提前告知使用者。
三、政务处理
大数据在助力政府的政务处理方面同样发挥着重要的作用。近年来精准扶贫是各级政府的首要工程,扶贫如何做到精准,考验着政府的执政能力。
精准扶贫首先要做到的就是精准,贫困户是不是真正的贫困户,这在过往是一件很难解决的难题。上级政府只有依靠下级政府的统计上报进行拨款,于是关系户成了贫困户,真正贫困的人缺难以得到实质性的帮助。
现如今有了大数据的加持,政府通过建档立卡,通过网络数据分析,对每一个贫困户进行核实。家里老人的就医记录,子女的工资水平,养殖等副业的收入等等都将进行评估,以确保精准扶贫落实到位。
电信诈骗无孔不入,但当电信诈骗遇上大数据,诈骗份子也将插翅难逃。如今利用大数据分析,诈骗短信,诈骗网站很容易被识别拦截。通过分析诈骗份子的“伪基站”地址,登录网址等信息也能很快锁定诈骗份子的藏身之处。
四、信用体系
俗话说民无信不立,国无信不强。可见信用对于个人,对于国家都有非常重要的意义。但如何识别一个人是否有信用,却不是一件容易的事。
在熟人社会里,我们可以通过一个人过往的表现,言行来判断他的信用。但在陌生人社会里,想要判定一个人是否有信用就很难了。这也影响了整个社会的运行,例如信用系统不完善,个人去银行贷款很难,网络购物也难以发展。
但如今有了大数据,这些难题都迎刃而解了。例如支付宝的芝麻积分,就是通过分析用户的学历、存款、购物行为、交友特征、履约历史等等数据来赋予用户对应的分数,表示用户的信用等级,同时将特定的特权开放给对应等级的用户。
现在支付宝、微信等信用数据都已并入央行主导的国民信用体系里,成为国家队。中国也正式建立了自己的信用体系,真正实现了有信用走遍天下都不怕,无信用则寸步难行。
20世纪最重要的资源是石油,谁掌握了石油,谁就统治了世界。21世纪最重要的资产则是数据,谁能在数据这座金矿中挖出黄金,谁就能掌握话语权,造福社会,创造财富。
提到大数据,最常见的应用就是大数据分析,大数据分析的数据来源不仅是局限于企业内部的信息化系统,还包括各种外部系统、机器设备、传感器、数据库的数据,如:政府、银行、国计民生、行业产业、社交网站等数据,通过大数据分析技术及工具将海量数据进行统计汇总后,以图形图表的方式进行数据展现,实现数据的可视化,在此基础上结合机器学习算法,对数据进行深度挖掘,发掘数据的潜在价值。
应用部分,大数据不仅包括企业内部应用系统的数据分析,还包括与行业、产业的深度融合,大数据分析的应用场景具有行业性,不同行业所呈现的内容与分析维度各不相同,具体场景包括:互联网行业、政府行业、金融行业、传统企业中的地产、医疗、能源、制造、电信行业等等。
1. 互联网行业大数据的应用代表为电商、社交、网络检索领域,可以根据销售数据、客户行为(活跃度、商品偏好、购买率等)数据、交易数据、商品收藏数据、售后数据等、搜索数据刻画用户画像,根据客户的喜好为其推荐对应的产品。
2. 政府行业在大数据分析部分包括质检部门、公安部门、气象部门、医疗部门等,质检部门包括对商品生产、加工、物流、贸易、消费全过程的信息进行采集、验证、检查,保证食品物品安全;气象部门通过构建大气运动规律评估模型、气象变化关联性分析等路径,精准地预测气象变化,寻找最佳的解决方案,规划应急、救灾工作。
3. 金融行业的大数据分析多应用于银行、证券、保险等细分领域,在大数据分析方面结合多种渠道数据进行分析,客户在社交媒体上的行为数据、在网站上消费的交易数据、客户办理业务的预留数据,结合客户年龄、资产规模、消费偏好等对客户群进行精准定位,分析其在金融业的需求等。