
limx趋于无穷,{(π/2)arctanx}的(1/x)次方,用凑e法求极限,怎么求,步骤
1个回答
关注

展开全部
您好 很高兴为您解答,根据您的提问?我的解答是:步骤一:用凑e法求极限首先,将θ=π/2式子化简。(π/2)Arctan x = (π/2) * (ln (1+ x^2))/2然后,令 y=x^2(π/2)Arctan x = (π/2) * (ln (1+ y))/2最后,让y→∞ ,即求取以下极限lim y→∞ {(π/2)* (ln (1+ y))/2}/y^(1/x)步骤二:用凑e法求极限可以看到,y的指数比该分子项低一个次数,我们先用凑e法将该分子项表达为e的指数:lim y→∞ {(π/2)* (ln (1+ y))/2}/y^(1/x) = lim y→∞ (π/2) * (e^(ln (1+ y))/2)/y^(1/x)=lim y→∞ (π/2) * (1+y)^(1/2)/y^(1/x)由于该分数项可以看出,y的指数会失去,故最后极限值为:lim y→∞ (π/2) * (1+y)^(1/2)/y^(1/x) = lim y→∞ (π/2) * ∞ = +∞
咨询记录 · 回答于2023-02-22
limx趋于无穷,{(π/2)arctanx}的(1/x)次方,用凑e法求极限,怎么求,步骤
您好 很高兴为您解答,根据您的提问?我的解答是:步骤一:用凑e法求极限首先,将θ=π/2式子化简。(π/2)Arctan x = (π/2) * (ln (1+ x^2))/2然后,令 y=x^2(π/2)Arctan x = (π/2) * (ln (1+ y))/2最后,让y→∞ ,即求取以下极限lim y→∞ {(π/2)* (ln (1+ y))/2}/y^(1/x)步骤二:用凑e法求极限可以看到,y的指数比该分子项低一个次数,我们先用凑e法将该分子项表达为e的指数:lim y→∞ {(π/2)* (ln (1+ y))/2}/y^(1/x) = lim y→∞ (π/2) * (e^(ln (1+ y))/2)/y^(1/x)=lim y→∞ (π/2) * (1+y)^(1/2)/y^(1/x)由于该分数项可以看出,y的指数会失去,故最后极限值为:lim y→∞ (π/2) * (1+y)^(1/2)/y^(1/x) = lim y→∞ (π/2) * ∞ = +∞
题都不对着
您好根据您的提问limx趋于无穷,{(π/2)arctanx}的(1/x)次方,用凑e法求极限,怎么求,步骤?我的解答是:lim(x->正无穷)(π/2-arctanx)/(1/x)用洛必达法则 上下求导得lim(x->正无穷)(-1/(1+x^2))/(-1/x^2)=lim(x->正无穷)x^2/(1+x^2)=lim(x->正无穷)1/(1+1/x^2)=1