求不定积分(1) (6-x)/((9-x^2))dx
1个回答
关注
展开全部
∫(6-x)/√(9-x^2)dx=∫6/√(9-x²)-x/√(9-x²)dx=-6arcos(x/3)-1/2∫1/√(9-x²)d(x²)=-6arcos(x/3)+(9-x²)½
咨询记录 · 回答于2023-02-11
求不定积分(1) (6-x)/((9-x^2))dx
分母加根号
∫(6-x)/√(9-x^2)dx=∫6/√(9-x²)-x/√(9-x²)dx=-6arcos(x/3)-1/2∫1/√(9-x²)d(x²)=-6arcos(x/3)+(9-x²)½
∫(6-x)/√(9-x^2)dx=∫6/√(9-x²)-x/√(9-x²)dx=-6arcos(x/3)-1/2∫1/√(9-x²)d(x²)=-6arcos(x/3)+(9-x²)^1/2+C
解析:∫6/√(9-x²)dx=-arcos(x/3)这里可以用换元法令x=3cost原式=∫1/[√(9-9costcost)]d(3cost)=∫sint^(-1)(-3sint)/3dt=-∫dt=-t+C=-arccos(x/3)+C
解析:∫6/√(9-x²)dx=-6arcos(x/3)这里可以用换元法令x=3cost原式=∫6/[√(9-9costcost)]d(3cost)=∫6sint^(-1)(-3sint)/3dt=-∫6dt=-6t+C=-6arccos(x/3)+C
不好意思,上面少打一个6,过程没问题,主要是换元法
这个的不定积分老师
∫(x+1)/(4+x²)dx=∫x/(4+x²)dx+∫1/(4+x²)dx=1/2∫1/(4+x²)d(x²)+1/2arctan(x/2)+C=1/2ln(4+x²)+1/2arctan(x/2)+C