(3,2)·(3,2)=(6,4)

1个回答
展开全部
摘要 亲!您好!很高兴为您解答!
这个是利用公式(x1,y1)。(x2,y2)=x1x2+y1y2,把相关数值代入上面的公式,求解即可。平面(x1,y1)(x2,y2)=x1x2+y1y2;空间(x1,y1,z1)(x2,y2,z2)=x1x2+y1y2+z1z2。
  例如:设P(x1,y1)Q(x2,y2)则PQ=(x2-x1,y2-y1)P*Q=x1*x2+y1*y2在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。    a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。
  由平面向量基本定理知,有且只有一对实数(x,y),使得a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。
  向量OP称为点P的位置向量。
咨询记录 · 回答于2021-12-14
(3,2)·(3,2)=(6,4)
亲!您好!很高兴为您解答!这个是利用公式(x1,y1)。(x2,y2)=x1x2+y1y2,把相关数值代入上面的公式,求解即可。平面(x1,y1)(x2,y2)=x1x2+y1y2;空间(x1,y1,z1)(x2,y2,z2)=x1x2+y1y2+z1z2。  例如:设P(x1,y1)Q(x2,y2)则PQ=(x2-x1,y2-y1)P*Q=x1*x2+y1*y2在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。    a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。  由平面向量基本定理知,有且只有一对实数(x,y),使得a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。  向量OP称为点P的位置向量。
这里具体来说就是,(3,2)·(3,2)=(3×3,2×2)=(9,4)
已赞过
你对这个回答的评价是?
评论 收起
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消