实对称矩阵的性质

1个回答
想吃一个草莓吖
2023-02-14
知道答主
回答量:30
采纳率:0%
帮助的人:4114
展开全部
实对称矩阵的主要性质: 1.实对称矩阵的特征值均为实数、特征向量可以取为实向量。 2.实对称矩阵的相异特征值对应的特征向量是正交的。 3.实对称矩阵可正交相似对角化。

主要性质:
1.实对称矩阵A的不同特征值对应的特征向量是正交的。

2.实对称矩阵A的特征值都是实数。

3.n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。

4.若A具有k重特征值λ0 必有k个线性无关的特征向量,或者说秩r(λ0E-A)必为n-k,其中E为单位矩阵。

5.实对称矩阵A一定可用正交矩阵对角化。


怎么判断一个矩阵是实对称矩阵
1、实对称矩阵A的不同特征值对应的特征向量是正交的。

2、实对称矩阵A的特征值都是实数,特征向量都是实向量。

3、n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。

4、若A具有k重特征值λ0 必有k个线性无关的特征向量,或者说秩r(λ0E-A)必为n-k,其中E为单位矩阵。

5、实对称矩阵A一定可正交相似对角化。

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消