
设f(x)在【0,1】连续且满足f(x)=x^2+积分0到1 xf(x)dx,求f(x)
1个回答
关注

展开全部
亲亲,非常荣幸为您解答
我们先对f(x)f(x)在[0,1][0,1]上的积分部分进行化简。∫01xf(x)dx=∫01x(x2+∫01xf(x)dx)dx=∫01x3dx+∫01x∫01xf(x)dxdx=14+∫01∫01x2f(x)dxdx=14+∫01f(x)(∫01x2dx)dx=14+13∫01x2f(x)dx∫01xf(x)dx=∫01x(x2+∫01xf(x)dx)dx=∫01x3dx+∫01x∫01xf(x)dxdx=41+∫01∫01x2f(x)dxdx=41+∫01f(x)(∫01x2dx)dx=41+31∫01x2f(x)dx因此,原式可以进一步化简为:f(x)=x2+∫01xf(x)dx=x2+34∫01x2f(x)dxf(x)=x2+∫01xf(x)dx=x2+43∫01x2f(x)dx移项得到:13∫01x2f(x)dx=43(f(x)−x2)31∫01x2f(x)dx=34(f(x)−x2)因为f(x)f(x)在[0,1][0,1]上连续,所以f(x)−x2f(x)−x


咨询记录 · 回答于2023-06-03
设f(x)在【0,1】连续且满足f(x)=x^2+积分0到1 xf(x)dx,求f(x)
亲亲,非常荣幸为您解答
我们先对f(x)f(x)在[0,1][0,1]上的积分部分进行化简。∫01xf(x)dx=∫01x(x2+∫01xf(x)dx)dx=∫01x3dx+∫01x∫01xf(x)dxdx=14+∫01∫01x2f(x)dxdx=14+∫01f(x)(∫01x2dx)dx=14+13∫01x2f(x)dx∫01xf(x)dx=∫01x(x2+∫01xf(x)dx)dx=∫01x3dx+∫01x∫01xf(x)dxdx=41+∫01∫01x2f(x)dxdx=41+∫01f(x)(∫01x2dx)dx=41+31∫01x2f(x)dx因此,原式可以进一步化简为:f(x)=x2+∫01xf(x)dx=x2+34∫01x2f(x)dxf(x)=x2+∫01xf(x)dx=x2+43∫01x2f(x)dx移项得到:13∫01x2f(x)dx=43(f(x)−x2)31∫01x2f(x)dx=34(f(x)−x2)因为f(x)f(x)在[0,1][0,1]上连续,所以f(x)−x2f(x)−x


因为f(x)f(x)在[0,1][0,1]上连续,所以f(x)−x2f(x)−x2也是连续的,设g(x)=f(x)−x2g(x)=f(x)−x2,则有:13∫01x2g(x)dx=43g(x)31∫01x2g(x)dx=34g(x)即:∫01x2g(x)dx=4g(x)∫01x2g(x)dx=4g(x)由于x2x2在[0,1][0,1]上非负,且f(x)f(x)是连续函数,根据积分中值定理,存在ξ∈[0,1]ξ∈[0,1],使得:∫01x2g(x)dx=g(ξ)∫01x2dx=13g(ξ)∫01x2g(x)dx=g(ξ)∫01x2dx=31g(ξ)所以有:13g(ξ)=4g(ξ)31g(ξ)=4g(ξ)解得:g(ξ)=0g(ξ)=0故f(x)−x2=0f(x)−x2=0,即:f(x)=x2f(x)=x2所以,原式的解为f(x)=x2f(x)=x2。







