如何证明1=0.999999…?
2023-05-24 · 知道合伙人教育行家
无脚鸟╰(⇀‸↼)╯
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:6742
获赞数:132160
现在为上海海事大学学生,在学习上有一定的经验,擅长数学。
向TA提问 私信TA
关注
展开全部
解:
这个题目好像在哪见过!
第一种解法:
∵ 1/3=0.333...
等式两边同时乘以3,即1/3×3=0.333...×3
又∵ 等式左边1/3×3=1,等式右边0.333...×3=0.999...
∴1=0.999...
标准解法:
令0.9的循环为x,
0.9循环可以看成是0.9加上0.09的循环,即:
x=0.9+0.1*x
X-0.1*X=0.9
X(1-0.1)=0.9
0.9X=0.9
所以,x=1
即1=0.999999[0.9的循环]
还有高二数学也有个定律:1和0.999999无限循环一样大
这个题目好像在哪见过!
第一种解法:
∵ 1/3=0.333...
等式两边同时乘以3,即1/3×3=0.333...×3
又∵ 等式左边1/3×3=1,等式右边0.333...×3=0.999...
∴1=0.999...
标准解法:
令0.9的循环为x,
0.9循环可以看成是0.9加上0.09的循环,即:
x=0.9+0.1*x
X-0.1*X=0.9
X(1-0.1)=0.9
0.9X=0.9
所以,x=1
即1=0.999999[0.9的循环]
还有高二数学也有个定律:1和0.999999无限循环一样大
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询