1.+设+f(x+2)=x^3+5,+则二阶导数+f`(x)=
1个回答
关注
展开全部
如果某点在曲线上设曲线方程为y=f(x),曲线上某点为(a,f(a))求曲线方程求导,得到f'(x),将某点代入,得到f'(a),此即为过点(a,f(a))的切线斜率,由直线的点斜式方程,得到切线的方程。y-f(a)=f'(a)(x-a)如果某点不在曲线上设曲线方程为y=f(x),曲线外某点为(a,b)求对曲线方程求导,得到f'(x),设:切点为(x0,f(x0)),将x0代入f'(x),得到切线斜率f'(x0),由直线的点斜式方程,得到切线的方程y-f(x0)=f'(x0)(x-x0),因为(a,b)在切线上,代入求得的切线方程,有:b-f(x0)=f'(x0)(a-x0),得到x0,代回求得的切线方程,即求得所求切线方程。
咨询记录 · 回答于2023-01-04
1.+设+f(x+2)=x^3+5,+则二阶导数+f`(x)=
这几个麻烦算一下
剩下两个 最后一个刚才你算过了
以P为切点的切线方程:y-f(a)=f'(a)(x-a);若过P另有曲线C的切线,切点为Q(b,f(b)),则切线为y-f(a)=f'(b)(x-a),也可y-f(b)=f'(b)(x-b),并且[f(b)-f(a)]/(b-a)=f'(b)。
如果某点在曲线上设曲线方程为y=f(x),曲线上某点为(a,f(a))求曲线方程求导,得到f'(x),将某点代入,得到f'(a),此即为过点(a,f(a))的切线斜率,由直线的点斜式方程,得到切线的方程。y-f(a)=f'(a)(x-a)如果某点不在曲线上设曲线方程为y=f(x),曲线外某点为(a,b)求对曲线方程求导,得到f'(x),设:切点为(x0,f(x0)),将x0代入f'(x),得到切线斜率f'(x0),由直线的点斜式方程,得到切线的方程y-f(x0)=f'(x0)(x-x0),因为(a,b)在切线上,代入求得的切线方程,有:b-f(x0)=f'(x0)(a-x0),得到x0,代回求得的切线方程,即求得所求切线方程。