y=2∧1/x在怎样的变化中为无穷小
1个回答
关注
展开全部
很高兴为你解答:y=2∧1/x在怎样的变化中为无穷小,x小于0并且无限趋近0时无穷小
咨询记录 · 回答于2022-10-19
y=2∧1/x在怎样的变化中为无穷小
很高兴为你解答:y=2∧1/x在怎样的变化中为无穷小,x小于0并且无限趋近0时无穷小
能在问一个题吗?
您说 我尽量来为你接待
怎样求极限呢
这个是高等数学哦
极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。一、利用恒等变形求极限利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。例1、求极限,其中分析 由于积的极限等于极限的积这一法则只对有限个因子成立,因此,应先对其进行恒等变形。解 因为===当时,而,故=二、利用变量代换求极限利用变量代换求极限的主要目的是化简原表达式,从而减少运算量,提高运算效率。常用的变量代换有倒代换、整体代换、三角代换等。例2、求极限,其中m,n为正整数。分析 这是含根式的()型未定式,应先将其利用变量代换进行化简,再进一步计算极限。解 令原式=
三、利用对数转换求极限利用对数转换求极限主要是通过公式进行恒等变形,特别的情形,在()型未定式时可直接运用例3、求极限解 原式=四、利用夹逼准则求极限利用夹逼准则求极限主要应用于表达式易于放缩的情形。例4、求极限分析 当我们无法或不易把无穷多个因子的积变为有限时,可考虑使用夹逼准则。解 因为,且不等式两端当趋于无穷时都以0为极限,所以=0五、利用单调有界准则求极限利用单调有界准则求极限主要应用于给定初始项与递推公式的数列极限。在确定存在的前提下,可由方程A=f(A)解出A,则=A。例5、设,(n=1,2,…),求极限。分析 由于题中并未给出表达式,也无法求出,故考虑利用单调有界准则。解 由易知0。根据算术平均数与几何平均数的关系,有所以,数列有下界,即对一切n1,有又所以即数列单调减少。由单调有界准则知数列有极限。现设=A,则由极限的保号性知A0.对式子两边同时取极限得解得 A=,即=(已舍去负根)六、利用等价无穷小求极限利用等价无穷小求极限是求极限极为重要的一种方法,也是最为简便、快捷的方法。学习时不仅要熟记常用的等价无穷小,还应学会灵活应用。同时应注意:只有在无穷小作为因式时,才能用其等价无穷小替换。例6、求极限分析 此题中sin(x-1),sinsin(x-1),lnx均为无穷小,而均作为因式,故可以利用等价无穷小快速求出极限。解 当时,故原式=
lim(x→0)[(x+1)sin(x+1)]/x∧2怎么求极限
这是个无穷小与有界量的乘积,因为无穷小与有界量的乘积仍是无穷小,直接可得极限为0.我的答案不一定准哈 有其他需要都可以找我,我比较擅长心理学 和人际
好吧
已赞过
评论
收起
你对这个回答的评价是?