无理数的概念
1个回答
展开全部
简单的说无理数就是10进制下的无限不循环小数,常见的无理数有圆周长与其直径的比值、欧拉数°、黄金比例p等,无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
有理数和无理数的区别
1、性质区别
有理数是两个整数的比,总能写成整数、有限小数或无限循环小数。无理数不能写成两个整数之比,是无限不循环小数。
2、结构区别
有理数是整数和分数的统称,无理数是所有不是有理数的实数。
3、范围区别
有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。无理数是指实数范围内不能表示成两个整数之比的数。
无理数集及其他数集的符号
无理数集相当于实数集中有理数集的补集,实数集R,有理数集Q,所以无理数集合符号为CrQ。
所有正整数组成的集合称为正整数集,记作N*,z+或N+。
所有负整数组成的集合称为负整数集,记作Z-。
全体虚数组成的集合称为虚数集,记作I。
全体实数和虚数组成的复数的集合称为复数集,记作C。