解空间的维数与秩的关系是什么?

1个回答
展开全部
摘要 向量的维数和秩无关,维数之和向量本身有关,但是秩总是小于等于维数。
秩是向量组的最大线性无关组的容量,维是其每个向量的分量个数。
例如向量组A={(x1,x2,x3)|x1=x2=x,x3=y.x,y∈R}。
则A的秩=2 ,[{(1,1,0),(0,0,1)}是它的一个最大线性无关组]。
A的维数是3。
咨询记录 · 回答于2022-04-29
解空间的维数与秩的关系是什么?
向量的维数和秩无关,维数之和向量本身有关,但是秩总是小于等于维数。秩是向量组的最大线性无关组的容量,维是其每个向量的分量个数。例如向量组A={(x1,x2,x3)|x1=x2=x,x3=y.x,y∈R}。则A的秩=2 ,[{(1,1,0),(0,0,1)}是它的一个最大线性无关组]。A的维数是3。
矩阵的秩有向量组的秩的概念可以引出矩阵的秩的概念。一个m行n列的矩阵可以看做是m个行向量构成的行向量组,也可看做n个列向量构成的列向量组。行向量组的秩成为行秩,列向量组的秩成为列秩,容易证明行秩等于列秩,所以就可成为矩阵的秩。矩阵的秩在线性代数中有着很大的应用,可以用于判断逆矩阵和线性方程组解的计算等方面。
线性方程组中维数是否总是等于秩数?
向量的维数和秩无关维数之和向量本身有关,但是秩总是小于等于维数.
1、矩阵的维数和矩阵的秩两者范围不同:维度,是数学中独立参数的数目;而秩表示的是其生成的子空间的维度。如果还考虑m× n矩阵,将A的秩定义为向量组F的秩,则可以看到如此定义的A的秩就是矩阵 A的线性无关纵列的极大数目。2、矩阵的维数和矩阵的秩两者用途不同:“点基于点是0维、点基于直线是1维、点基于平面是2维、点基于体是3维”。再进一步解释,在点上描述(定位)一个点就是点本身,不需要参数;在直线上描述(定位)一个点,需要1个参数(坐标值)。 在平面上描述(定位)一个点,需要2个参数(坐标值);在体上描述(定位)一个点,需要3个参数(坐标值)。 而矩阵的秩的一个有用应用是计算线性方程组解的数目。
3、矩阵的维数和矩阵的秩两者对应关系不同:矩阵的维数没有固定的对应关系。 而对于每个矩阵A,fA都是一个线性映射,同时,对每个的 线性映射f,都存在矩阵A使得 f= fA。也就是说,映射是一个同构映射。所以一个矩阵 A的秩还可定义为fA的像的维度。矩阵 A称为 fA的变换矩阵。
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消