
(1/2·2/3·…·n/n+1)·2的1+3+…+2n-1次方,化简
1个回答
关注

展开全部
(1/2·2/3·…·n/n+1)·2的1+3+…+2n-1次方=[1/(n+1)]*2^(1+ n-1)(n-1)/2=[1/(n+1)]*2^[ n(n-1]/2
咨询记录 · 回答于2022-12-17
(1/2·2/3·…·n/n+1)·2的1+3+…+2n-1次方,化简
(1/2·2/3·…·n/n+1)·2的1+3+…+2n-1次方=[1/(n+1)]*2^(1+ n-1)(n-1)/2=[1/(n+1)]*2^[ n(n-1]/2
(1/2*2/3·…*n/n+1)·2的1+3+…+2n-1次方=[1/(n+1)]*2^(1+ n-1)(n-1)/2=[1/(n+1)]*2^[ n(n-1]/2
您问的是我回答的意思吗?
(1/2*2/3·…*n/n+1)·2的1+3+…+2n-1次方=(n+1)分之1*2^(1+ n-1)(n-1)/2=(n+1)分之|*2^[ n(n-1]/2
(1/2*2/3·…*n/n+1)·2的1+3+…+2n-1次方=(n+1)分之1*2^(1+ n-1)(n-1)/2=(n+1)分之1*2^[ n(n-1]/2
是,谢谢了
(1/2*2/3·…*n/n+1)·2的1+3+…+2n-1次方=(n+1)分之1*2^(1+ n-1)(n-1)/2=(n+1)分之1*2^n(n-1)/2