试论述线性规划与非线性规划,以及两者的主要区别
1个回答
关注
展开全部
1线性规划线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。线性规划研究线性约束条件下线性目标函数的极值问题的数学理论和方法。线性规划就是用方程组求值,因为直线的焦点就是所求的最值。目标函数和约束条件都是线性函数的情形则属于线性规划。
咨询记录 · 回答于2022-12-04
试论述线性规划与非线性规划,以及两者的主要区别
1线性规划线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。线性规划研究线性约束条件下线性目标函数的极值问题的数学理论和方法。线性规划就是用方程组求值,因为直线的焦点就是所求的最值。目标函数和约束条件都是线性函数的情形则属于线性规划。
2非线性规划非线性规划具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。
非线性规划与线性规划的区别主要在于含义的不同以及解决问题的模型和方法略有差别。线性规划是用直线解决问题,而非线性规划是曲线甚至更复杂的图像解决问题。
区别回答再详细一点
1.1.约束条件不同线性规划主要是由确定的等式构成方程组,去求解目标函数的极值问题,全是线性成分(一次式)而非线性规划构成的方程组并不是等式,而是不等式,通过不等式的约束条件,去求解目标函数的极值。(有非线性成分,例如平方)
1.2.最优解范围不同如果最优解存在,线性规划只能存在可行域的边界上找到(一般还是在顶点处),而非线性规划的最优解可能存在于可行域的任意一点达到。