y=(2+5x)(4-3x)
1个回答
关注
展开全部
抛物线的性质1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b)/4a)当-b/2a=0,〔即b=0〕时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。
咨询记录 · 回答于2022-10-26
y=(2+5x)(4-3x)
亲!您描述的不完整哦,能发个图片吗?无法确认您的问题
一般地,自变量x和因变量y之间存在如下关系:一般式:f(x)=ax²+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。顶点式:y=a(x-h)²+k(a≠0,a、h、k为常数)。交点式(与x轴):y=a(x-x1)(x-x2)(a≠0,a、x1、x2为常数)x1、x2为二次函数与x轴的两交点。
定义重要知识:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
转化3种形式的转化∶①一般式和顶点式对于二次函数y=ax2+bx+c,其顶点坐标为(-b/2a,(4ac-b2)/4a),即h=-b/2a=(x1+x2)/2。②一般式和交点式x1,x2=[-b±√(b2-4ac)]/2a(即一元二次方程求根公式)。
抛物线的性质1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b)/4a)当-b/2a=0,〔即b=0〕时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。