∫x的平方/根号下4-9x的平方 ·dx
1个回答
关注
展开全部
令x=(2/3)sint 则sint=3x/2cost=根号(1-sin^2t)=根号(1-9x^2/4)=2分之根号(4-9x^2)dx=(2/3)costdt∫x^2/根号(4-9x^2)*dx=∫(4/9)sin^2t/2cost (2/3)costdt=2/27∫(1-cos2t)dt=2/27(t-sintcost)+C=2/27[arcsin(3/2)x-4分之3x*根号(4-9x^2)]+C
咨询记录 · 回答于2023-02-15
∫x的平方/根号下4-9x的平方 ·dx
令x=(2/3)sintdx=(2/3)costdt∫x^2/根号(4-9x^2)*dx=∫(4/9)sin^2t/2cost (2/3)costdt=2/27∫(1-cos^2t)dt
令x=(2/3)sintdx=(2/3)costdt∫x^2/根号(4-9x^2)*dx=∫(4/9)sin^2t/2cost (2/3)costdt=2/27∫(1-cos2t)dt
令x=(2/3)sintdx=(2/3)costdt∫x^2/根号(4-9x^2)*dx=∫(4/9)sin^2t/2cost (2/3)costdt=2/27∫(1-cos2t)dt=2/27(t-sintcost)+C=2/27[arcsin3x/2-3x/4 根号(4-9x)]+C
令x=(2/3)sint 则sint=3x/2cost=根号(1-sin^2t)=根号(1-9x^2/4)=2分之根号(4-9x^2)dx=(2/3)costdt∫x^2/根号(4-9x^2)*dx=∫(4/9)sin^2t/2cost (2/3)costdt=2/27∫(1-cos2t)dt=2/27(t-sintcost)+C=2/27[arcsin3x/2-3x/4 根号(4-9x)]+C
令x=(2/3)sint 则sint=3x/2cost=根号(1-sin^2t)=根号(1-9x^2/4)=2分之根号(4-9x^2)dx=(2/3)costdt∫x^2/根号(4-9x^2)*dx=∫(4/9)sin^2t/2cost (2/3)costdt=2/27∫(1-cos2t)dt=2/27(t-sintcost)+C=2/27[arcsin(3/2)x-4分之3x*根号(4-9x^2)]+C
最后一段是正确答案
明白了吗?
懂了