y=ln1+x^3/1-x^3导数
1个回答
关注
展开全部
拓展:导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
咨询记录 · 回答于2023-03-08
y=ln1+x^3/1-x^3导数
同志,您可以直接把题目拍个老师了。
第三题
好的老师
y=ln1+x^3/1-x^3导数为多项式和。具体过程稍等老师发送图片。
此题核心考察突破口就是对数化简
老师为啥是-
后面那个-x3求导=-3x2
好的老师
这些基本公式别忘了
首先,判断题型为函数导数题。其次,观察函数为哪类求导,隐函数,参数方程,反函数,复合函数,乘积函数,商函数等。然后,利用对应求导公式,有些取对数,取幂指数,用导数定义的技巧更快。最后,通过恒等变形化简整理可得答案为多项式和。
拓展:导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。