结合重积分和曲线曲面积分内容简述对积分思想的理解
1个回答
关注
展开全部
结合重积分和曲线曲面积分内容简述对积分思想的理解定积分、二重积分、三重积分以及曲线、曲面积分统称为黎曼积分,是高等数学研究的重点内容,定积分、二重积分、三重积分以及曲线、曲面积分它们的定义都是经过分割、近似、求和、去极限四步最后归结为一个特定结构和式的极限值,定义可以用统一形式给出:
从以上各种积分的概念形式和计算方法来看,定积分的积分区域是线性的、二重积分的积分区域是面状的、三重积分的积分区域是体状的,以上三种积分概念、性质和计算方法类似;而曲线、曲面积分由于在近似过程中取点时,所取的点是积分曲线或积分曲面上的点,它满足曲线或曲面方程,所以在计算曲线、曲面积分时可以采用代入转化为定积分或二重积分的方法来计算。
咨询记录 · 回答于2022-06-20
结合重积分和曲线曲面积分内容简述对积分思想的理解
您的问题已收到,打字需要一点时间,还请稍等一下,请不要结束咨询哦,您也可以提供更多有效信息,以便我更好为您解答
结合重积分和曲线曲面积分内容简述对积分思想的理解定积分、二重积分、三重积分以及曲线、曲面积分统称为黎曼积分,是高等数学研究的重点内容,定积分、二重积分、三重积分以及曲线、曲面积分它们的定义都是经过分割、近似、求和、去极限四步最后归结为一个特定结构和式的极限值,定义可以用统一形式给出: 从以上各种积分的概念形式和计算方法来看,定积分的积分区域是线性的、二重积分的积分区域是面状的、三重积分的积分区域是体状的,以上三种积分概念、性质和计算方法类似;而曲线、曲面积分由于在近似过程中取点时,所取的点是积分曲线或积分曲面上的点,它满足曲线或曲面方程,所以在计算曲线、曲面积分时可以采用代入转化为定积分或二重积分的方法来计算。
本回答由图为信息科技(深圳)有限公司提供