微积分的应用

 我来答
百川东到海0988
2022-12-05 · TA获得超过185个赞
知道小有建树答主
回答量:1493
采纳率:99%
帮助的人:20.2万
展开全部

微积分的应用参考如下:

一、微积分在几何中的应用

微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。

求平面图形的面积

由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a,x=b 和轴所围成的图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。

例如:求曲线和直线x=l,x=2及x轴所围成的图形的面积。

分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。

二、微积分在经济学的应用

高等数学在经济学中运用十分基础和广泛,经济学与数学是密不可分息息相关的。

设:生产x个产品的边际成本C=100+2x,其固定成本为C(0)=1000元,产品单价规定为500元。假设生产出的产品能完全销售,问生产量为多少时利润最大?并求最大利润

解:总成本函数为

C(x)=∫x0(100+2t)dt+C(0)=100x+x 2+1000

总收益函数为R(x)=500x

总利润L(x)=R(x)-C(x)=400x-x2-1000,L’=400-2x,令L’=0,得x=200,因为L’’(200)<0。所以,生产量为200单位时,利润最大。最大利润为L(200)=400×200-200 2-1000=390009(元)

在这里我们应用了定积分,分析出利润最大,并不是意味着多增加产量就必定增加利润,只有合理安排生产量,才能取得总大的利润。

创佳投票
2024-10-18 广告
【创佳投票】100万+场投票活动使用,更专业稳定安全-免费使用;可做多种类型投票活动,多种场景模板提供选择,多种功能可自定义配置,可根据客户的行业类型,提供全方位的解决方案;用户群体庞大,服务于数万家大小企,30万+客户;5万+企业;举行中... 点击进入详情页
本回答由创佳投票提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式