设方阵A满足A^2-A-2I=0,证明:(1)A和I-A都可逆,并求它们的逆矩阵(2)A+I和A-
1个回答
关注
展开全部
咨询记录 · 回答于2021-10-10
设方阵A满足A^2-A-2I=0,证明:(1)A和I-A都可逆,并求它们的逆矩阵(2)A+I和A-
A^2-A-2I=0 A^2-IA-2I=0 A^2-IA=2I A(I-A)=2I 把2除到左边去 A逆=(I-A)/2 (I-A)逆=I/2
已赞过
评论
收起
你对这个回答的评价是?