不定积分号下ln(-1/x+c)dx

1个回答
展开全部
摘要 1、分部积分法的形式
(1)通过对u(x)求微分后,du=u'dx中的u'比u更加简洁。
例:∫x^2*e^xdx=∫x^2de^x=x^2*e^x-∫e^xdx^2=x^2*e^x-∫2x*e^xdx
(2)利用有些函数经一次或二次求微分后不变的性质来进行分部积分。
例:∫e^x*sinxdx=∫sinxde^x=e^x*sinx-∫e^xdsinx=e^x*sinx-∫e^x*cosxdx
=e^x*sinx-∫cosxde^x=e^x*sinx-e^x*cosx+∫e^xdcosx
=e^x*sinx-e^x*cosx-∫e^x*sinxdx
则2∫e^x*sinxdx=e^x*sinx-e^x*cosx,可得
∫e^x*sinxdx=1/2e^x*(sinx-cosx)+C
2、不定积分公式
∫mdx=mx+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C。
咨询记录 · 回答于2022-01-11
不定积分号下ln(-1/x+c)dx
1、分部积分法的形式(1)通过对u(x)求微分后,du=u'dx中的u'比u更加简洁。例:∫x^2*e^xdx=∫x^2de^x=x^2*e^x-∫e^xdx^2=x^2*e^x-∫2x*e^xdx(2)利用有些函数经一次或二次求微分后不变的性质来进行分部积分。例:∫e^x*sinxdx=∫sinxde^x=e^x*sinx-∫e^xdsinx=e^x*sinx-∫e^x*cosxdx=e^x*sinx-∫cosxde^x=e^x*sinx-e^x*cosx+∫e^xdcosx=e^x*sinx-e^x*cosx-∫e^x*sinxdx则2∫e^x*sinxdx=e^x*sinx-e^x*cosx,可得∫e^x*sinxdx=1/2e^x*(sinx-cosx)+C2、不定积分公式∫mdx=mx+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C。
已赞过
你对这个回答的评价是?
评论 收起
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消