三次方程求根公式
1个回答
展开全部
标准型的一元三次方程aX^3+bX^2+cX+d=0(a,b,c,d∈R,且a≠0)
其解法有:
1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;
2、中国学者范盛金于1989年发表的盛金公式法。
一元三次方程解法思想是:
通过配方和换元,使三次方程降次为二次方程求解。中国南宋伟大的数学家秦九韶在他1247年编写的世界数学名著《 数书九章》一书中提出了数字一元三次方程与任何高次方程的解法。
“ 正负开方术”,提出“商常为正,实常为负,从常为正,益常为负”的原则,纯用代数加法,给出统一的运算规律,并且扩充到任何高次方程中去。这个方法比几百年以后欧洲数学家所提出的
计算方法要高明许多。
现在,这种方法被后人称为“秦九韶程序”。世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则。欧洲三次方程解法的发现是在16世纪的意大利,那时,数学家常常把自己的发现秘而不宣,而是向同伴提出挑战,让他们解决同样的问题。
想必这是一项很砥砺智力,又吸引人的竞赛,三次方程的解法就是这样发现的。最初,有一个叫菲奥尔的人,从别人的秘传中学会了解一些三次方程,便去向另一个大家称为塔尔塔利亚的人挑战。
您可能关注的内容
广告