2.3反向传播中,神经元的梯度是如何计算的?权重是如何更新的?
1个回答
关注
展开全部
你好,在反向传播中,神经元的梯度是依据损失函数对神经元激活函数求导得到的。在反向传播算法中,我们先通过前向传播计算出每个神经元的输出值,然后依据损失函数计算输出值与实际值之间的误差。然后,我们沿着网络逐层反向传播这个误差,并计算每个神经元的误差贡献和梯度值。最终,我们可以利用梯度下降等优化算法来更新神经元的权重和偏置,以最小化损失函数哦。
咨询记录 · 回答于2023-03-29
2.3反向传播中,神经元的梯度是如何计算的?权重是如何更新的?
你好
2.3反向传播中,神经元的梯度是如何计算的?权重是如何更新的?
我需要这道题的答案
你好,在反向传播中,神经元的梯度是依据损失函数对神经元激活函数求导得到的。在反向传播算法中,我们先通过前向传播计算出每个神经元的输出值,然后依据损失函数计算输出值与实际值之间的误差。然后,我们沿着网络逐层反向传播这个误差,并计算每个神经元的误差贡献和梯度值。最终,我们可以利用梯度下降等优化算法来更新神经元的权重和偏置,以最小化损失函数哦。
在反向传播算法中,主要有两种方式计算神经元的梯度:一种是基于数值微分的梯度计算方法,另一种是基于符号微分的梯度计算方法。基于数值微分的方法是通过在输入上微小地变化 epsilon 并计算输出的变化量,然后使用中心差分公式来近似梯度值。这种方法的缺点是计算效率较低、误差较大,不能很好地适应高维空间和大规模的神经网络。而基于符号微分的方法可以更快速、更准确地计算梯度,同时避免了数值误差和运算量的问题。另外,在反向传播过程中,我们需要对神经元的权重进行更新,以便使神经网络能够更好地拟合训练数据。具体来说,我们可以利用误差梯度来计算各层神经元的权重梯度,并依据梯度下降等优化算法来更新权重值。权重的更新通常是按以下公式进行的:w' = w - learning_rate * gradient,其中 w' 表示更新后的权重值,w 表示原始的权重值,learning_rate 表示学习率,gradient 表示权重的梯度值。
我要写哪一个呢。上面的两个都要写吗
第一个就可以
字数的话两个一起