利用拉普拉斯变换的微分性质求解微分方程y'-y=e^2t,y(0)=0

1个回答
展开全部
咨询记录 · 回答于2022-10-11
利用拉普拉斯变换的微分性质求解微分方程y'-y=e^2t,y(0)=0
亲,拉普拉斯变换的微分性质求解微分方程y'-y=e^2t,y(0)=0:设p=y',则y''=dy'/dx=pdp/dy代入原方程得p^2=e^(2y)+C由y(0)=y'(0)=0得C=-1所以y=ln√(p^2+1)两边求导得y'=p=[p/(p^2+1)]dp/dx于是x=arctanp+C=arctanp即y'=tanx从而可得y=-ln|cosx|+C=-ln|cosx|
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消