5已知:(x+m)/(4-x^2)+m/(x-2)=1.无解求m的值
1个回答
关注
展开全部
咨询记录 · 回答于2023-05-08
5已知:(x+m)/(4-x^2)+m/(x-2)=1.无解求m的值
亲,很高兴为您解答!5已知:(x+m)/(4-x^2)+m/(x-2)=1.无解求m的值的详细解答:这道题可以通过将左边的式子化简,然后将其与右边的式子进行比较,来求解m的值。首先,将左边的式子化简:(x+m)/(4-x^2)+m/(x-2)=1= (x+m)(x-2)/(4-x^2)(x-2) + m/(x-2)= (x^2+xm-2x+2m)/(4-x^2)(x-2) + m/(x-2)= (x^2+xm-2x+2m+m(4-x^2))/(4-x^2)(x-2)= (x^2+xm-2x+6m)/(4-x^2)(x-2)将左边的式子与右边的式子进行比较,可以得出:x^2+xm-2x+6m=4-x^2x^2+xm-6m=4xm-6m=4-x^2m(x-6)=4-x^2m= (4-x^2)/(x-6)由于m是一个常数,所以可以得出:m= (4-x^2)/(x-6),其中x为任意实数。