概论率考试
1个回答
关注
展开全部
概论率考试内容:(1)确定事件间的关系,进行事件的运算(2)利用事件的关系进行概率计算(3)利用概率的性质证明概率等式或计算概率(4)有关古典概型、几何概型的概率计算(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率(6)有关事件独立性的证明和计算概率(7)有关独重复试验及伯努利概率型的计算(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率(9)由给定的试验求随机变量的分布(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率(11)求随机变量函数的分布(12)确定二维随机变量的分布(13)利用二维均匀分布和正态分布计算概率考研数学概率一定要掌握的30个题型(14)求二维随机变量的边缘分布、条件分布(15)判断随机变量的独立性和计算概率(16)求两个独立随机变量函数的分布(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差(18)求随机变量函数的数学期望(19)求两个随机变量的协方差、相关系数并判断相关性(20)求随机变量的矩和协方差矩阵(21)利用切比雪夫不等式推证概率不等式(22)利用中心极限定理进行概率的近似计算(23)利用t分布、&chi2分布、F分布的定义、性质推证统计量的分布、性质(24)推证某些统计量(特别是正态总体统计量)的分布(25)计算统计量的概率(26)求总体分布中未知参数的矩估计量和极大似然估计量(27)判断估计量的无偏性、有效性和一致性(28)求单个或两个正态总体参数的置信区间(29)对单个或两个正态总体参数假设进行显著性检验(30)利用&chi2检验法对总体分布假设进行检验。
咨询记录 · 回答于2022-12-03
概论率考试
亲,很高兴为您解答!概论率考试:随机事件是概率论的研究对象,深刻理解随机事件的概念及其基本计算公式与性质,对后期概率的学习具有重要的影响。
概论率考试内容:(1)确定事件间的关系,进行事件的运算(2)利用事件的关系进行概率计算(3)利用概率的性质证明概率等式或计算概率(4)有关古典概型、几何概型的概率计算(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率(6)有关事件独立性的证明和计算概率(7)有关独重复试验及伯努利概率型的计算(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率(9)由给定的试验求随机变量的分布(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率(11)求随机变量函数的分布(12)确定二维随机变量的分布(13)利用二维均匀分布和正态分布计算概率考研数学概率一定要掌握的30个题型(14)求二维随机变量的边缘分布、条件分布(15)判断随机变量的独立性和计算概率(16)求两个独立随机变量函数的分布(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差(18)求随机变量函数的数学期望(19)求两个随机变量的协方差、相关系数并判断相关性(20)求随机变量的矩和协方差矩阵(21)利用切比雪夫不等式推证概率不等式(22)利用中心极限定理进行概率的近似计算(23)利用t分布、&chi2分布、F分布的定义、性质推证统计量的分布、性质(24)推证某些统计量(特别是正态总体统计量)的分布(25)计算统计量的概率(26)求总体分布中未知参数的矩估计量和极大似然估计量(27)判断估计量的无偏性、有效性和一致性(28)求单个或两个正态总体参数的置信区间(29)对单个或两个正态总体参数假设进行显著性检验(30)利用&chi2检验法对总体分布假设进行检验。