三中三各组五个数能组合多少次

1个回答
展开全部
摘要 从五个中任意选三个按任意顺序都能组成一个数,则5×4×3=60 。
若只分组不要顺序则5×4×3÷(3×2×1)=10。
基本理论和公式排列与元素的顺序有关,组合与顺序无关。
如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。
两个基本原理是排列和组合的基础
1. 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
2. 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。
咨询记录 · 回答于2023-12-28
三中三各组五个数能组合多少次
好的
从五个中任意选三个按任意顺序都能组成一个数,则5×4×3=60 。 若只分组不要顺序则5×4×3÷(3×2×1)=10。 基本理论和公式排列与元素的顺序有关,组合与顺序无关。 如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。 两个基本原理是排列和组合的基础 1. 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。 2. 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消