复数的运算公式
1个回答
展开全部
1、加法法则
复数的加法按照以下规定的法则进行,设z1=a+bi,z2=c+di是任意两个复数,则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
2、减法法则
复数的减法按照以下规定的法则进行,设z1=a+bi,z2=c+di是任意两个复数,则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。
3、乘法法则
规定复数的乘法按照以下的法则进行。
设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i。其实就是把两个复数相乘,类似两个多项式相乘,展开得: ac+adi+bci+bdi2,因为i2=-1,所以结果是(ac-bd)+(bc+ad)i 。两个复数的积仍然是一个复数。
4、除法法则
复数除法定义,满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。运算方法,可以把除法换算成乘法做,在分子分母同时乘上分母的共轭。所谓共轭你可以理解为加减号的变换,互为共轭的两个复数相乘是个实常数。
复数的基本性质
1、共轭复数所对应的点关于实轴对称。
2、两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。
3、在复平面上,表示两个共轭复数的点关于X轴对称。