2.函数 f(x)=e^x+e^(x-1)^2 在点(1,f(1))处的切线方程为 __ o
1个回答
关注
展开全部
k=f'(x)=e^x+e^(x-1)^2*{(x-1)^2}'=e^x+2(x-1)*e^(x-1)当x=1时k=ef(1)=e+1切线方程为y-e-1=e(x-1)
咨询记录 · 回答于2023-04-11
2.函数 f(x)=e^x+e^(x-1)^2 在点(1,f(1))处的切线方程为 __ o
k=f'(x)=e^x+e^(x-1)^2*{(x-1)^2}'=e^x+2(x-1)*e^(x-1)当x=1时k=ef(1)=e+1切线方程为y-e-1=e(x-1)
您好,总之正确答案是∵f(x)=e^x+e^(x-1)^2 f(1)=e+1f'(x)=e^x+2*(x-1)*e^(x-1)^2k=f'(1)=e∴切线方程为y-e-1= e*(x-1)即y=ex+1