定积分的基本运算法则
1个回答
展开全部
定积分是积分的一种,是函du数f(x)在区间[a,b]上的积分和的极限。定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。
即由y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。若定积分存在,则它是一个具体的数值(曲边梯形的面积)。
定积分的计算题型主要有以下几种:
1、基本积分法。
2、分割区域处理分段函数,绝对值函数,取整函数和最大最小函数。
3、利用函数的奇偶性化简定积分。
定积分的基本定理:
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分。也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分。若只有有限个间断点,则定积分存在。若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。