求∬(z+y)dS,∑:z=√(4-x∧2-y∧2)
1个回答
关注
展开全部
咨询记录 · 回答于2023-02-17
求∬(z+y)dS,∑:z=√(4-x∧2-y∧2)
解:∬(z+y)dS = ∬(√(4-x^2-y^2)+y)dS由于Σ处于xy平面,因此z=√(4-x∧2-y∧2),上下边界分别为y=-2,2,左右边界为x=-2,2,即可将S拆分为四个小面积,分别为S1,S2,S3,S4,则∬(z+y)dS = ∬(z+y)dS1 + ∬(z+y)dS2 + ∬(z+y)dS3 + ∬(z+y)dS4∬(z+y)dS1 = ∫-2~2∫-2~2(√(4-x^2-y^2)+y)dydx∬(z+y)dS2 = ∫2~2∫-2~2(√(4-x^2-y^2)+y)dydx∬(z+y)dS3 = ∫2~2∫2~2(√(4-x^2-y^2)+y)dydx∬(z+y)dS4 = ∫-2~2∫2~2(√(4-x^2-y^2)+y)dydx将上述每一部分的积分分别求出,即可得到:∬(z+y)dS = 16π