正方形的周长公式是什么?
1个回答
展开全部
扩展资料:
正方形是特殊的平行四边形。在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
正方形的性质:
1、两组对边分别平行;四条边都相等;邻边互相垂直。
2、四个角都是90°,内角和为360°。
3、正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形。
4、对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角
5、正方形是特殊的矩形,正方形是特殊的菱形。
一、面积和周长关系
如果以同一面积的三角形而言,以等边三角形的周界最短;如果以同一面积的四边形而言,以正方形的周界是最短;如果以同一面积的五边形而言,以正五边形的周界最短。
如果以同一面积的任意多边形而言,以正圆形的周界最短。周长只能用于二维图形(平面、曲面)上,三维图形(立体)如柱体、锥体、球体等都不能以周界表示其边界大小,而是要用总表面面积。
总表面面积=该立体所有面的面积和。
二、四边形面积
在公元七世纪,Brahmagupta开发了一个公式,现在称为Brahmagupta的公式,用于其侧面的循环四边形(四边形刻在圆中)的面积。
1842年,德国数学家Carl Anton Bretschneider和Karl Georg Christian von Staudt独立地发现了一种称为Bretschneider公式的公式,用于任何四边形的区域。