∫(3x-1)/√(x^2-2x-3)
1个回答
关注
展开全部
√(x^2+ 2x)= √[(x+1)八2-1],换元,令x-1 = sec t , (x^2+ 2x)=tan t d x = sect tantdt ,代入并化简,原积分化为」 ( 3 sect -2) sect / (sect -1) dt = 了 ( 3 sect+1) dt +j1/(sect -1) dt = 3In (sect + tant ) + t + j(sect+1)/ tan^2 t dt = 3 ln(sect + tant ) + t + )( cot^2 t + csc t cot t ) dt = 3 ln (sect + tant ) + t - cot t - t - csc t +C = 3 In ( x+1 + √(x^2+2x) ) -(x+2)/(x^2 + 2x)+C注: cot t = 1 /(x^2+2x) , csct =(x+1)/(x^2+2x)
咨询记录 · 回答于2022-04-05
∫(3x-1)/√(x^2-2x-3)
您好,这道题由我来解答,我是百度问一问合作的老师,已经在百度知道答题3年了,已经收到您的问题,我这边正在为您查询,打字需要2-5分钟,请稍等片刻,请不要结束咨询,给您整理好的答案如下:
亲,晚上好,很高兴为您解答哦。(3x-1)/√(x^2-2x-3)=3x·x2-3x·2x+3x·3+x2-2x+3 =3x3-6x2+9x+x2-2x+3 =3x3-5x2+7x+3 .
亲,您可以参考下(3x-1)/(x^2+2x+3)=½∫(2x-2)/(x²+2x+3)dx=½∫(2x+2-4)/(x²+2x+3)dx=½∫(2x+2)/(x²+2x+3)dx - ½∫4/(x²+2x+3)dx=½∫(2x+2)/(x²+2x+3)dx - 2∫1/(x²+2x+3)dx=½∫d(x²+2x+3)/(x²+2x+3) - 2∫1/[(x+1)²+2]dx=½ln|x²+2x+3| - ∫1/{[(x+1)/√2]²+1}dx + C=½ln|x²+2x+3| - (√2)∫1/{[(x+1)/√2]²+1}d[(x+1)/√2] + C=½ln|x²+2x+3| - (√2)arctan[(x+1)/√2] + C
扩展资料不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C
希望能够帮到您,如有做的不对的地方,您可继续咨询,多多包涵。~
分母还有根号呢
还有,减号怎么变成加号了?
亲后面的解析就是哦
分母是根号下x^2➖2x-3
亲稍等下哦
√(x^2+ 2x)= √[(x+1)八2-1],换元,令x-1 = sec t , (x^2+ 2x)=tan t d x = sect tantdt ,代入并化简,原积分化为」 ( 3 sect -2) sect / (sect -1) dt = 了 ( 3 sect+1) dt +j1/(sect -1) dt = 3In (sect + tant ) + t + j(sect+1)/ tan^2 t dt = 3 ln(sect + tant ) + t + )( cot^2 t + csc t cot t ) dt = 3 ln (sect + tant ) + t - cot t - t - csc t +C = 3 In ( x+1 + √(x^2+2x) ) -(x+2)/(x^2 + 2x)+C注: cot t = 1 /(x^2+2x) , csct =(x+1)/(x^2+2x)