设f(x)在[0, 3]上连续,在(0, 3)内可导,且f(0) + f(1) + f(2) =
1个回答
关注
展开全部
因为f(x)在[0,3]上连续,
所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M和最小值m。
于是:m≤f(0)≤M,m≤f(1)≤M,m≤f(2)≤M,
故:m≤f(0)+f(1)+f(2)/3 ≤M。
由介值定理知,至少存在一点c∈[0,2],使得: f(c)=f(0)+f(1)+f(2)/3 =1。
又由:f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,满足罗尔定理的条件,
故:必存在ξ∈(c,3)(0,3),使f'(ξ)=0。
咨询记录 · 回答于2023-12-26
(η) = 0.
(η) = 0.
明:存在η ∈ (0, 3),使得f
设f(x)在[0, 3]上连续,在(0, 3)内可导,且f(0) + f(1) + f(2) = f(3) = 0,证
(η) = 0.
明:存在η ∈ (0, 3),使得f
设f(x)在[0, 3]上连续,在(0, 3)内可导,且f(0) + f(1) + f(2) = f(3) = 0,证
(η) = 0.
明:存在η ∈ (0, 3),使得f
设f(x)在[0, 3]上连续,在(0, 3)内可导,且f(0) + f(1) + f(2) = f(3) = 0,证
(η) = 0.
明:存在η ∈ (0, 3),使得f
设f(x)在[0, 3]上连续,在(0, 3)内可导,且f(0) + f(1) + f(2) = f(3) = 0,证
不是 f(0)+f(1)+f(2)=f(3)=0
好的
明:存在η ∈ (0, 3),使得f
设f(x)在[0, 3]上连续,在(0, 3)内可导,且f(0) + f(1) + f(2) = f(3) = 0,证
(η) = 0.
明:存在η ∈ (0, 3),使得f
设f(x)在[0, 3]上连续,在(0, 3)内可导,且f(0) + f(1) + f(2) = f(3) = 0,证
(η) = 0.
明:存在η ∈ (0, 3),使得f
设f(x)在[0, 3]上连续,在(0, 3)内可导,且f(0) + f(1) + f(2) = f(3) = 0,证
(η) = 0.
明:存在η ∈ (0, 3),使得f
设f(x)在[0, 3]上连续,在(0, 3)内可导,且f(0) + f(1) + f(2) = f(3) = 0,证
(η) = 0.
明:存在η ∈ (0, 3),使得f
设f(x)在[0, 3]上连续,在(0, 3)内可导,且f(0) + f(1) + f(2) = f(3) = 0,证