求∫(0,1/2)dx/(x-1)(x-2)的不定积分
1个回答
关注
展开全部
∫(0,1/2)dx/(x-1)(x-2)=∫(0,1/2)1/(x-2)-1/(x-1)dx=∫(0,1/2)1/(x-2)d(x-2)-∫(0,1/2)1/(x-1)d(x-1)=ln(x-2)-ln(x-1)|(0,1/2)=ln(x-2)/(x-1)|(0,1/2)=ln2-ln3=ln(2/3)
咨询记录 · 回答于2022-11-20
求∫(0,1/2)dx/(x-1)(x-2)的不定积分
∫(0,1/2)dx/(x-1)(x-2)=∫(0,1/2)1/(x-2)-1/(x-1)dx=∫(0,1/2)1/(x-2)d(x-2)-∫(0,1/2)1/(x-1)d(x-1)=ln(x-2)-ln(x-1)|(0,1/2)
11和14
=ln(x-2)/(x-1)|(0,1/2)
=ln2-ln3=ln(2/3)
还有图片里的第十四题
ln(2/3)
∫(0,1/2)dx/(x-1)(x-2)=∫(0,1/2)1/(x-2)-1/(x-1)dx=∫(0,1/2)1/(x-2)d(x-2)-∫(0,1/2)1/(x-1)d(x-1)=ln(x-2)-ln(x-1)|(0,1/2)=ln(x-2)/(x-1)|(0,1/2)=ln2-ln3=ln(2/3)
本次提问首个相关问题已经解决。如果还想让当前老师服务,可以咨询当前的老师如何升级服务。6轮服务咨询,无限轮次服务,语音、视频服务等多种方式。