lim³√n^sinn!÷(n+1)
1个回答
关注
展开全部
亲亲,您好,很高兴为您解答您咨询的问题已为您找到:解法一:(定义法)∵对任意的ε>0,存在N=[1/ε³]([1/ε³]表示不超过1/ε³的最大整数),当n>N时,有|n^(2/3)sinn!/(n+1)|≤n^(2/3)/(n+1)<n^(2/3)/n=n^(-1/3)<ε∴根据极限定义,知lim(n->∞)[n^(2/3)sinn!/(n+1)]=0;解法二:(两边夹法)∵|n^(2/3)sinn!/(n+1)|≤n^(2/3)/(n+1)∴-n^(2/3)/(n+1)≤n^(2/3)sinn!/(n+1)≤n^(2/3)/(n+1)∵lim(n->∞)[n^(2/3)/(n+1)]=lim(n->∞)[(1/n^(1/3))/(1+1/n)]=0同理lim(n->∞)[-n^(2/3)/(n+1)]=0∴根据两边夹定理,知lim(n->∞)[n^(2/3)sinn!/(n+1)]=0.
咨询记录 · 回答于2022-09-25
lim³√n^sinn!÷(n+1)
亲亲,您好,很高兴为您解答您咨询的问题已为您找到:解法一:(定义法)∵对任意的ε>0,存在N=[1/ε³]([1/ε³]表示不超过1/ε³的最大整数),当n>N时,有|n^(2/3)sinn!/(n+1)|≤n^(2/3)/(n+1)<n^(2/3)/n=n^(-1/3)<ε∴根据极限定义,知lim(n->∞)[n^(2/3)sinn!/(n+1)]=0;解法二:(两边夹法)∵|n^(2/3)sinn!/(n+1)|≤n^(2/3)/(n+1)∴-n^(2/3)/(n+1)≤n^(2/3)sinn!/(n+1)≤n^(2/3)/(n+1)∵lim(n->∞)[n^(2/3)/(n+1)]=lim(n->∞)[(1/n^(1/3))/(1+1/n)]=0同理lim(n->∞)[-n^(2/3)/(n+1)]=0∴根据两边夹定理,知lim(n->∞)[n^(2/3)sinn!/(n+1)]=0.
已赞过
评论
收起
你对这个回答的评价是?