求1^1+2^2+3^3+4^4+... ...+n^n之和?
1个回答
关注
展开全部
咨询记录 · 回答于2024-01-05
求1^1+2^2+3^3+4^4+... ...+n^n之和?
利用立方差公式,我们得到以下等式:
n^3 - (n - 1)^3 = 1 × [n^2 + (n - 1)^2 + n(n - 1)]
= n^2 + (n - 1)^2 + n^2 - n
= 2 × n^2 + (n - 1)^2 - n
接下来,对等式进行全相加:
2^3 - 1^3 = 2 × 2^2 + 1^2 - 2
3^3 - 2^3 = 2 × 3^2 + 2^2 - 3
4^3 - 3^3 = 2 × 4^2 + 3^2 - 4
...
n^3 - (n - 1)^3 = 2 × n^2 + (n - 1)^2 - n
对等式全相加后得到:
n^3 - 1^3 = 2 × (2^2 + 3^2 + ... + n^2) + [1^2 + 2^2 + ... + (n - 1)^2] - (2 + 3 + 4 + ... + n)
整理得:
n^3 - 1 = 2 × (1^2 + 2^2 + 3^2 + ... + n^2) - 2 + [1^2 + 2^2 + ... + (n - 1)^2 + n^2] - n^2 - (2 + 3 + 4 + ... + n)
继续整理,我们得到:
n^3 - 1 = 3 × (1^2 + 2^2 + ... + n^2) - 2 - n^2 - (1 + 2 + 3 + ... + n) + 1
进一步简化,我们得到:
n^3 - 1 = 3 × (1^2 + 2^2 + ... + n^2) - (n^2 + n) - n(n + 1)/2
最终,我们得到:
3 × (1^2 + 2^2 + ... + n^2) = n^3 + n^2 + n(n + 1)/2 = (n/2) × (2n^2 + 2n + n + 1) = (n/2) × (n + 1) × (2n + 1)
所以,得出结论:
1^2 + 2^2 + 3^2 + ... + n^2 = n(n + 1)(2n + 1)/6