8260248536463这些数字有什么规律吗

1个回答
展开全部
摘要 数字规律
第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数) 。
[例1]1,3,5,7,9,( ) A.7 B.8 C.11 D.13
[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。故选C 。
2、二级等差数列。是指等差数列的变式,相邻两项之差之间有着明显的规律性, 往往构成等差数列.
[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36
[解析] 相邻两位数之差分别为3, 5, 7, 9,
是一个差值为2的等差数列, 所以括号内的数与26的差值应为11, 即括号内的数为26+11=37.故选C 。
3、分子分母的等差数列。是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,( ) A、8/9 B、9/10 C、9/11 D、7/8
[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。故选D 。
4、混合等差数列。是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,( ),( )。
A、19 21 B、19 23 C、21 23 D、27 30
[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。 第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。
5、等比数列的常规公式。设等比数列的首项为a1,公比为q(q不等于0) ,则等比数列的通项公式为an=a1q n-1(n为自然数) 。
[例5] 12,4,4/3,4/9,( ) A、2/9 B、1/9 C、1/27 D、4/27
[解析] 很明显,这是一个典型的等比数列,公比为1/3。故选D 。
6、二级等比数列。是指等比数列的变式,相邻两项之比有着明显的规律性,往往构成等比数列。
[例6] 4,6,10,18,34,( ) A
咨询记录 · 回答于2021-10-27
8260248536463这些数字有什么规律吗
数字规律第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。1、等差数列的常规公式。设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数) 。[例1]1,3,5,7,9,( ) A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。故选C 。2、二级等差数列。是指等差数列的变式,相邻两项之差之间有着明显的规律性, 往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列, 所以括号内的数与26的差值应为11, 即括号内的数为26+11=37.故选C 。3、分子分母的等差数列。是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。[例3] 2/3,3/4,4/5,5/6,6/7,( ) A、8/9 B、9/10 C、9/11 D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。故选D 。4、混合等差数列。是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。[例4] 1,3,3,5,7,9,13,15,,( ),( )。A、19 21 B、19 23 C、21 23 D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。 第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。5、等比数列的常规公式。设等比数列的首项为a1,公比为q(q不等于0) ,则等比数列的通项公式为an=a1q n-1(n为自然数) 。[例5] 12,4,4/3,4/9,( ) A、2/9 B、1/9 C、1/27 D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。故选D 。6、二级等比数列。是指等比数列的变式,相邻两项之比有着明显的规律性,往往构成等比数列。[例6] 4,6,10,18,34,( ) A
76753548268248536463
已赞过
你对这个回答的评价是?
评论 收起
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消