
已知函数y=tan(2+x).则微分dy等于
1个回答
关注

展开全部
已知函数y=tan(2+x).则微分dy等于sec(2+x)的平方dx哦

咨询记录 · 回答于2022-12-29
已知函数y=tan(2+x).则微分dy等于
已知函数y=tan(2+x).则微分dy等于sec(2+x)的平方dx哦

微分是一个变量在某个变化过程中的改变量的线性主要部分。若函数y=f(x)在点x处有导数f'(x)存在,则y因x的变化量△x所引起的改变量是△y=f(x+△x)一f(x)=f'(x)·△x+o(△x),式中o(△x)随△x趋于0。因此△y的线性形式的主要部分dy=f'(x)△x是y的微分。[6]可见,微分作为函数的一种运算,是与求导(函)数的运算一致的。
设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) − f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。 AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。
设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
这题呢?
数列的极限问题是我们学习的一个比较重要的部分,同时,极限的理论也是高等数学的基础之一。数列极限的问题作为微积分的基础概念,其建立与产生对微积分的理论有着重要的意义。

