cscx的不定积分

1个回答
我是九筒娱
2023-02-15 · TA获得超过593个赞
知道答主
回答量:44
采纳率:100%
帮助的人:1.3万
展开全部
cscx的不定积分是ln|cscx-cotx|+C。

∫cscx dx=∫1/sinx dx=∫1/tan(x/2) d[tan(x/2)]=ln|tan(x/2)|+C=ln|sin(x/2)/cos(x/2)|+C=ln|(1-cosx)/sinx|+C=ln|cscx-cotx|+C。

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。


积分方法:

1、积分公式法

直接利用积分公式求出不定积分。

2、换元积分法

换元积分法可分为第一类换元法与第二类换元法。 第一类换元法(即凑微分法)通过凑微分,最后依托于某个积分公式。进而求得原不定积分。

第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。

3、分部积分法

设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu。两边积分,得分部积分公式∫udv=uv-∫vdu。

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消