请教高等数学问题?
1个回答
关注
展开全部
(1):f(x)中的1/x趋向无穷大量,cos(1/x)值域是有界的|cos(1/x)|<=1,当cos(1/x)=0时f(x)=0,当cos(1/x)=1时f(x)=1/x,当x趋近0时是一个变大的量,因此f(x)是一个在正负无穷之间不断变化的函数,且不断过0点;(2):在极限的广义定义中极限可以是无穷大,但是在狭义定义当中,当极限为无穷时便称极限不存在,一般在高中的时候便是按照狭义定义的;(3):无穷小量趋近负无穷;(4):x不等于0时,上下同乘(1+bx)?+1,分子变为bx,约分后去掉x,f(x)=b/((1+bx)?+1),代入x=0,b=6;(5):极限的定义决定了在某一点的极限由该点附近的函数决定,与该点函数值无关。当f(x)为连续函数时,该点极限才与该点极限相等,这也是连续函数的定义。
咨询记录 · 回答于2022-09-19
请教高等数学问题?
写一下详细过程
(1):f(x)中的1/x趋向无穷大量,cos(1/x)值域是有界的|cos(1/x)|<=1,当cos(1/x)=0时f(x)=0,当cos(1/x)=1时f(x)=1/x,当x趋近0时是一个变大的量,因此f(x)是一个在正负无穷之间不断变化的函数,且不断过0点;(2):在极限的广义定义中极限可以是无穷大,但是在狭义定义当中,当极限为无穷时便称极限不存在,一般在高中的时候便是按照狭义定义的;(3):无穷小量趋近负无穷;(4):x不等于0时,上下同乘(1+bx)?+1,分子变为bx,约分后去掉x,f(x)=b/((1+bx)?+1),代入x=0,b=6;(5):极限的定义决定了在某一点的极限由该点附近的函数决定,与该点函数值无关。当f(x)为连续函数时,该点极限才与该点极限相等,这也是连续函数的定义。