有图片高数问题
1个回答
关注
展开全部
亲亲,为您查询到:
The curve C has equation y=f(x), x>0. Given that C passes through the point P(8,2) ('()一部+3-2(网)'),
(a) find the equation of the tangent to C at P. Write your answer in the form y=mx+c, where m and c are constants to be found.
(b) Find, in simplest form, f(x). Since the curve y=f(x) passes through P(8,2), this point coordinates satisfy the curve equation. Moreover, the tangent line at P on the curve C is parallel to the line y=8x+2.
咨询记录 · 回答于2024-01-12
有图片高数问题
亲亲,英文的嘛
对哒
好的亲亲
已知曲线C的方程为$y=f(x)$,其中$x>0$。
给定条件是:曲线C通过点$P(8,2)$。
要求:
(a) 求曲线C在点$P$处的切线方程,并写成$y=mx+c$的形式,其中$m$和$c$为待求常数。
(b) 将$f(x)$表示为最简单的形式。
根据题意,曲线$y=f(x)$经过点$P(8,2)$,因此该点的坐标满足曲线方程。又因为曲线C在点$P$处的切线与直线$y=8x+2$平行,所以我们可以进一步求解。
所以f′(1)=2,联立两方程可求得m c的值;(