2个回答
展开全部
(x-2)dy/dx = y + 2(x-2)^3
x = 2 时 y = 0;
x ≠ 2 时,记 u = x-2, 则 dy/dx = (dy/du)(du/dx)= dy/du
(x-2)dy/dx = y + 2(x-2)^3 化为 udy/du - y = 2u^3
即 dy/du - y/u = 2u^2 为一阶线性微分方程,通解是
y = e^(∫du/u)[∫2u^2e^(-∫du/u)du + C]
= u[∫2udu + C] = u(u^2 + C) = u^3 + Cu
得通解 y = (x-2)^3 + C(x-2), 已包含了 x = 2 时, y = 0.
x = 2 时 y = 0;
x ≠ 2 时,记 u = x-2, 则 dy/dx = (dy/du)(du/dx)= dy/du
(x-2)dy/dx = y + 2(x-2)^3 化为 udy/du - y = 2u^3
即 dy/du - y/u = 2u^2 为一阶线性微分方程,通解是
y = e^(∫du/u)[∫2u^2e^(-∫du/u)du + C]
= u[∫2udu + C] = u(u^2 + C) = u^3 + Cu
得通解 y = (x-2)^3 + C(x-2), 已包含了 x = 2 时, y = 0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询