(2ⁿ/n²+3ⁿ/n³)的n分之一,当n趋近于正无穷时的极限

1个回答
展开全部
摘要 您好,1、等价无穷小的转化  只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小  2、洛必达法则  (大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!  当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。  3、泰勒公式  (含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。  4、无穷大比上无穷大  面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!  5、无穷小于有界函数  无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了!  6、夹逼定理  主要对付的是数列极限!这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
咨询记录 · 回答于2022-10-26
(2ⁿ/n²+3ⁿ/n³)的n分之一,当n趋近于正无穷时的极限
您好,1、等价无穷小的转化  只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小  2、洛必达法则  (大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!  当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。  3、泰勒公式  (含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。  4、无穷大比上无穷大  面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!  5、无穷小于有界函数  无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了!  6、夹逼定理  主要对付的是数列极限!这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用  对付数列极限(q绝对值符号要小于1)  8、各项的拆分相加  (对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,因为极限去掉有限项目极限值不变化。  9、求左右极限的方式  (对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,因为极限去掉有限项目极限值不变化。  10、两个重要极限的应用  这两个很重要!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大,无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用地两个重要极限)  11、趋近于无穷大  还有个方法,非常方便的方法,就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的!x的x次方快于x!快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)!!当x趋近无穷的时候,他们的比值的极限一眼就能看出来了。  12、换元法  换元法是一种技巧,不会对单一道题目而言就只需要换元,而是换元会夹杂其中。  13、四则运算  假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。  14、数列极限  还有对付数列极限的一种方法,就是当你面对题目实在是没有办法,走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。  15、单调有界  单调有界的性质,对付递推数列时候使用证明单调性!  16、导数的定义  直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减某个值)加减f(x)的形式,看见了要特别注意)(当题目中告诉你F(0)=0时候f(0)导数=0的时候,就是暗示你一定要用导数定义!
这个题的解答呢
好了吗??
这不是我问得题啊
亲亲你能相似点吗
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消