matlab二分法代码
1个回答
关注
展开全部
您好,亲
我是生活导师小强,非常高兴能够为您解答。以下是 MATLAB 中二分法的示例代码:
function [root,iter] = bisection(f,a,b,tol,maxiter)
% f: the function to be solved
% a, b: the initial interval [a,b]
% tol: the tolerance
% maxiter: the maximum number of iterations allowed
% Initialization
iter = 0;
fa = feval(f,a);
% Check if the initial interval is valid
if sign(feval(f,b)) == sign(fa)
error('f(a) and f(b) must have opposite signs')
end
% Loop until convergence or the maximum number of iterations is reached
while (b-a)/2 > tol && iter < maxiter
% Compute the midpoint and evaluate the function at the midpoint
c = (a + b)/2;
fc = feval(f,c);
% Update the interval [a,b]
if fc == 0
% The root has been found
root = c;
return
elseif sign(fc) == sign(fa)
a = c;
fa = fc;
else
b = c;
end
% Update the iteration counter
iter = iter + 1;
end
% Output the root and the number of iterations
root = (a + b)/2;
end
咨询记录 · 回答于2024-01-08
matlab二分法代码
您好,亲
我是生活导师小强,非常高兴能够为您解答。以下是 MATLAB 中二分法的示例代码:
function [root,iter] = bisection(f,a,b,tol,maxiter)
% f: the function to be solved
% a, b: the initial interval [a,b]
% tol: the tolerance
% maxiter: the maximum number of iterations allowed
% Initialization
iter = 0;
fa = feval(f,a);
% Check if the initial interval is valid
if sign(feval(f,b)) == sign(fa)
error('f(a) and f(b) must have opposite signs')
end
% Loop until convergence or the maximum number of iterations is reached
while (b-a)/2 > tol && iter < maxiter
% Compute the midpoint and evaluate the function at the midpoint
c = (a + b)/2;
fc = feval(f,c);
% Update the interval [a,b]
if fc == 0
% The root has been found
root = c;
return
elseif sign(fc) == sign(fa)
a = c;
fa = fc;
else
b = c;
end
% Update the iteration counter
iter = iter + 1;
end
% Output the root and the number of iterations
root = (a + b)/2;
end
这是一个函数,需要传递四个参数:
- 待解的函数 f
- 初始区间 [a, b]
- 容忍误差 tol
- 最大迭代次数 maxiter
函数将返回求解的根以及迭代次数。
使用该函数的示例代码如下:
f = @(x) x^3 - 2*x - 5;
a = 2;
b = 3;
tol = 1e-6;
maxiter = 100;
[root,iter] = bisection(f,a,b,tol,maxiter);
fprintf('The root is %.6f, found in %d iterations\n',root,iter);
在这个例子中,我们使用二分法求解函数 f(x) = x^3 - 2x - 5 在区间 [2,3] 中的根,容忍误差为 1e-6,最大迭代次数为 100。函数返回的结果是根的近似值和求解过程中迭代的次数。