matlab二分法代码

1个回答
展开全部
摘要 您好,亲
我是生活导师小强,非常高兴能够为您解答。以下是 MATLAB 中二分法的示例代码:
function [root,iter] = bisection(f,a,b,tol,maxiter)
% f: the function to be solved
% a, b: the initial interval [a,b]
% tol: the tolerance
% maxiter: the maximum number of iterations allowed
% Initialization
iter = 0;
fa = feval(f,a);
% Check if the initial interval is valid
if sign(feval(f,b)) == sign(fa)
error('f(a) and f(b) must have opposite signs')
end
% Loop until convergence or the maximum number of iterations is reached
while (b-a)/2 > tol && iter < maxiter
% Compute the midpoint and evaluate the function at the midpoint
c = (a + b)/2;
fc = feval(f,c);
% Update the interval [a,b]
if fc == 0
% The root has been found
root = c;
return
elseif sign(fc) == sign(fa)
a = c;
fa = fc;
else
b = c;
end
% Update the iteration counter
iter = iter + 1;
end
% Output the root and the number of iterations
root = (a + b)/2;
end
咨询记录 · 回答于2024-01-08
matlab二分法代码
您好,亲 我是生活导师小强,非常高兴能够为您解答。以下是 MATLAB 中二分法的示例代码: function [root,iter] = bisection(f,a,b,tol,maxiter) % f: the function to be solved % a, b: the initial interval [a,b] % tol: the tolerance % maxiter: the maximum number of iterations allowed % Initialization iter = 0; fa = feval(f,a); % Check if the initial interval is valid if sign(feval(f,b)) == sign(fa) error('f(a) and f(b) must have opposite signs') end % Loop until convergence or the maximum number of iterations is reached while (b-a)/2 > tol && iter < maxiter % Compute the midpoint and evaluate the function at the midpoint c = (a + b)/2; fc = feval(f,c); % Update the interval [a,b] if fc == 0 % The root has been found root = c; return elseif sign(fc) == sign(fa) a = c; fa = fc; else b = c; end % Update the iteration counter iter = iter + 1; end % Output the root and the number of iterations root = (a + b)/2; end
这是一个函数,需要传递四个参数: - 待解的函数 f - 初始区间 [a, b] - 容忍误差 tol - 最大迭代次数 maxiter 函数将返回求解的根以及迭代次数。 使用该函数的示例代码如下: f = @(x) x^3 - 2*x - 5; a = 2; b = 3; tol = 1e-6; maxiter = 100; [root,iter] = bisection(f,a,b,tol,maxiter); fprintf('The root is %.6f, found in %d iterations\n',root,iter); 在这个例子中,我们使用二分法求解函数 f(x) = x^3 - 2x - 5 在区间 [2,3] 中的根,容忍误差为 1e-6,最大迭代次数为 100。函数返回的结果是根的近似值和求解过程中迭代的次数。
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消