如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PB=1,PC=2,PA=3,求∠BPC的度数。
展开全部
因为△ABC中AC=BC,∠ACB=Rt∠
所以可将三角形APC绕C旋转90度,CA与CB重合,P移动到D,连接PD
显然BD=PA=1,CD=PC=2,∠PCD=90°,∠APC=∠CDB
所以PD=2√2,∠PDC=∠DPC=45°
因为PB=3
所以PD^2+BD^2=PB^2
所以ΔPBD是直角三角形且∠PDB=90°
所以∠CDB=90°+45°=135°
所以可将三角形APC绕C旋转90度,CA与CB重合,P移动到D,连接PD
显然BD=PA=1,CD=PC=2,∠PCD=90°,∠APC=∠CDB
所以PD=2√2,∠PDC=∠DPC=45°
因为PB=3
所以PD^2+BD^2=PB^2
所以ΔPBD是直角三角形且∠PDB=90°
所以∠CDB=90°+45°=135°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我有更好的答案
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询