-sinxcos(π-πsin²x)等于多少
1个回答
关注
展开全部
咨询记录 · 回答于2023-12-24
-sinxcos(π-πsin²x)等于多少
我们首先对 $\cos(\pi - \pi\sin^{2}x)$ 进行化简:
$\cos(\pi - \pi\sin^{2}x) = \cos(\pi)\cos(\pi\sin^{2}x) + \sin(\pi)\sin(\pi\sin^{2}x)$
由于 $\cos(\pi) = -1$ 和 $\sin(\pi) = 0$,因此:
$\cos(\pi - \pi\sin^{2}x) = - \cos(\pi\sin^{2}x)$
将上述结果带入原式中,我们得到:
$- \sin x \cos(\pi - \pi\sin^{2}x) = - \sin x(- \cos(\pi\sin^{2}x)) = \sin x \cos(\pi\sin^{2}x)$
因此,原式等于 $\sin x \cos(\pi\sin^{2}x)$。