求卷积(e^-t)u(t)*sin(t)u(t)
1个回答
关注
展开全部
s(t)=sin(t)u(t)*u(t-1) =∫(-∞→+∞)sin(x)u(x)u(t-1-(t>1) =-cos(t-1)+1 (t>1) t≤0时,s(t)=0
咨询记录 · 回答于2022-06-28
求卷积(e^-t)u(t)*sin(t)u(t)
s(t)=sin(t)u(t)*u(t-1) =∫(-∞→+∞)sin(x)u(x)u(t-1-(t>1) =-cos(t-1)+1 (t>1) t≤0时,s(t)=0
不对
正确答案e^(-3t)sin(t)怎么来的
这边计算的是s(t)=sin(t)u(t)*u(t-1)=∫(-∞→+∞)sin(x)u(x)u(t-1-x)dx=∫(-∞→+∞)sin(x)u(x)u(t-1-x)dx=∫(0→t-1)sin(x)dx (t>1)=-cos(t-1)+1 (t>1)t≤0时,s(t)=0
已赞过
评论
收起
你对这个回答的评价是?