提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另
提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE分析问题:学生甲:如图...
提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了.解决问题:请你选择上述一种方法给予证明.问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.
展开
展开全部
证明:如图1,
∵四边形ABCD为正方形,
∴∠BCD=90°,AC平分∠BCD,
∵PM⊥BC,PN⊥CD,
∴四边PMCN为矩形,PM=PN,
∵∠BPE=90°,∠BCD=90°,
∴∠PBC+∠CEP=180°,
而∠CEP+∠PEN=180°,
∴∠PBM=∠PEN,
在△PBM和△PEN中
∴△PBM≌△PEN(AAS),
∴PB=PE;
如图2,连结PD,
∵四边形ABCD为正方形,
∴CB=CD,CA平分∠BCD,
∴∠BCP=∠DCP,
在△CBP和△CDP中
,
∴△CBP≌△CDP(SAS),
∴PB=PD,∠CBP=∠CDP,
∵∠BPE=90°,∠BCD=90°,
∴∠PBC+∠CEP=180°,
而∠CEP+∠PEN=180°,
∴∠PBC=∠PED,
∴∠PED=∠PDE,
∴PD=PE,
∴PB=PD;
如图3,PB=PE还成立.
理由如下:过点P作PM⊥BC,PN⊥CD,垂足分别为M,N,
∵四边形ABCD为正方形,
∴∠BCD=90°,AC平分∠BCD,
∵PM⊥BC,PN⊥CD,
∴四边PMCN为矩形,PM=PN,
∴∠MPN=90°,
∵∠BPE=90°,∠BCD=90°,
∴∠BPM+∠MPE=90°,
而∠MEP+∠EPN=90°,
∴∠BPM=∠EPN,
在△PBM和△PEN中
,
∴△PBM≌△PEN(AAS),
∴PB=PE.
∵四边形ABCD为正方形,
∴∠BCD=90°,AC平分∠BCD,
∵PM⊥BC,PN⊥CD,
∴四边PMCN为矩形,PM=PN,
∵∠BPE=90°,∠BCD=90°,
∴∠PBC+∠CEP=180°,
而∠CEP+∠PEN=180°,
∴∠PBM=∠PEN,
在△PBM和△PEN中
|
∴△PBM≌△PEN(AAS),
∴PB=PE;
如图2,连结PD,
∵四边形ABCD为正方形,
∴CB=CD,CA平分∠BCD,
∴∠BCP=∠DCP,
在△CBP和△CDP中
|
∴△CBP≌△CDP(SAS),
∴PB=PD,∠CBP=∠CDP,
∵∠BPE=90°,∠BCD=90°,
∴∠PBC+∠CEP=180°,
而∠CEP+∠PEN=180°,
∴∠PBC=∠PED,
∴∠PED=∠PDE,
∴PD=PE,
∴PB=PD;
如图3,PB=PE还成立.
理由如下:过点P作PM⊥BC,PN⊥CD,垂足分别为M,N,
∵四边形ABCD为正方形,
∴∠BCD=90°,AC平分∠BCD,
∵PM⊥BC,PN⊥CD,
∴四边PMCN为矩形,PM=PN,
∴∠MPN=90°,
∵∠BPE=90°,∠BCD=90°,
∴∠BPM+∠MPE=90°,
而∠MEP+∠EPN=90°,
∴∠BPM=∠EPN,
在△PBM和△PEN中
|
∴△PBM≌△PEN(AAS),
∴PB=PE.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询