如何基于knn,决策树,kmeans算法的xxx数据分类或预测实践设计

1个回答
展开全部
摘要 如何基于knn,决策树,kmeans算法的xxx数据分类或预测实践设计亲,您好,为您找到以下解答:数据挖掘分类方法有下列几种:(1)决策树决策树归纳是经典的分类算法。它采用自顶向下递归的各个击破方式构造决策树。树的每一个结点上使用信息增益度量选择测试属性。可以从生成的决策树中提取规则。(2) KNN法(K-Nearest Neighbor)KNN法即K最近邻法,最初由Cover和Hart于1968年提出的,是一个理论上比较成熟的方法。该方法的思路非常简单直观:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。(3) SVM法SVM法即支持向量机(Support Vector Machine)法,由Vapnik等人于1995年提出,具有相对优良的性能指标。该方法是建立在统计学习理论基础上的机器学习方法。通过学习算法,SVM可以自动寻找出那些对分类有较好区分能力的支持向量,由此构造出的分类器可以最大化类与类的间隔,因而有较好的适应能力和较高的分准率。该方法只需要由各类域的边界样本的类别来决定最后的分类结果。(4) VSM法VSM法即向量空间模型(Vector Space Model)法,由Salton等人于60年代末提出。这是最早也是最出名的信息检索方面的数学模型。其基本思想是将文档表示为加权的特征向量:D=D(T1,W1;T2,W2;…;Tn,Wn),然后通过计算文本相似度的方法来确定待分样本的类别。当文本被表示为空间向量模型的时候,文本的相似度就可以借助特征向量之间的内积来表示。希望能帮助到您!
咨询记录 · 回答于2022-11-22
如何基于knn,决策树,kmeans算法的xxx数据分类或预测实践设计
如何基于knn,决策树,kmeans算法的xxx数据分类或预测实践设计亲,您好,为您找到以下解答:数据挖掘分类方法有下列几种:(1)决策树决策树归纳是经典的分类算法。它采用自顶向下递归的各个击破方式构造决策树。树的每一个结点上使用信息增益度量选择测试属性。可以从生成的决策树中提取规则。(2) KNN法(K-Nearest Neighbor)KNN法即K最近邻法,最初由Cover和Hart于1968年提出的,是一个理论上比较成熟的方法。该方法的思路非常简单直观:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。(3) SVM法SVM法即支持向量机(Support Vector Machine)法,由Vapnik等人于1995年提出,具有相对优良的性能指标。该方法是建立在统计学习理论基础上的机器学习方法。通过学习算法,SVM可以自动寻找出那些对分类有较好区分能力的支持向量,由此构造出的分类器可以最大化类与类的间隔,因而有较好的适应能力和较高的分准率。该方法只需要由各类域的边界样本的类别来决定最后的分类结果。(4) VSM法VSM法即向量空间模型(Vector Space Model)法,由Salton等人于60年代末提出。这是最早也是最出名的信息检索方面的数学模型。其基本思想是将文档表示为加权的特征向量:D=D(T1,W1;T2,W2;…;Tn,Wn),然后通过计算文本相似度的方法来确定待分样本的类别。当文本被表示为空间向量模型的时候,文本的相似度就可以借助特征向量之间的内积来表示。希望能帮助到您!
帮我完成一下这个吧救救孩子
亲,您好,KNN,即K近邻算法,K近邻就是K个最近的邻居,当需要预测一个未知样本的时候,就由与该样本最接近的K个邻居来决定。KNN既可以用于分类问题,也可以用于回归问题。当进行分类预测时,使用K个邻居中,类别数量最多(或加权或加权最多)者,作为预测结果;当进行回归预测时,使用K个邻居的均值(或加权均值),作为预测结果。使用KNN算法实现分类建模预测:以鸢尾花数据为例,通过KNN算法实现分类任务。为了方便可视化,只取其中的两个特征.希望能帮助到您!
您按照我这个步骤尝试一下,有任何问题可以及时跟我们反馈哦!
亲,您好,Kmeans聚类算法是一种常用的聚类方法。Kmeans算法是一个重复移动类中心点的过程,把类的中心点,也称重心(centroids),移动到其包含成员的平均位置,然后重新划分其内部成员。算法流程:1、首先确定一个k值,即我们希望将数据集经过聚类得到k个集合。2、从数据集中随机选择k个数据点作为质心。3、对数据集中每一个点,计算其与每一个质心的距离(如欧式距离),离哪个质心近,就划分到哪个质心所属的集合。4、把所有数据归好集合后,一共有k个集合。然后重新计算每个集合的质心。5、如果新计算出来的质心和原来的质心之间的距离小于某一个设置的阈值(表示重新计算的质心的位置变化不大,趋于稳定,或者说收敛),我们可以认为聚类已经达到期望的结果,算法终止。6、如果新质心和原质心距离变化很大,需要迭代3~5步骤。希望能帮助到您!
可以
帮我做这个吗
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消